Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Soft robots excel in safety and adaptability, yet their lack of structural integrity and dependency on open-curve movement paths restrict their dexterity. Conventional robots, albeit faster due to sturdy locomotion mechanisms, are typically less robust to physical impact. We introduce a multi-material design and printing framework that extends classical mechanism design to soft robotics, synergizing the strengths of soft and rigid materials while mitigating their respective limitations. Using a tool-changer equipped with multiple extruders, we blend thermoplastics of varying Shore hardness into monolithic systems. Our strategy emulates joint-like structures through biomimicry to achieve terrestrial trajectory control while inheriting the resilience of soft robots. We demonstrate the framework by 3D printing a legged soft robotic system, comparing different mechanism syntheses and material combinations, along with their resulting movement patterns and speeds. The integration of electronics and encoders provides reliable closed-loop control for the robot, enabling its operation across various terrains including sand, soil, and rock environments. This cost-effective framework offers an approach for creating 3D-printed soft robots employable in real-world environments.more » « lessFree, publicly-accessible full text available December 1, 2026
- 
            The integration of electronics into compliant materials is typically complex, cumbersome, and jeopardizes system-level compliance. Using multi-material fused deposition modeling, we introduce a framework in which components of a soft robot and conductive traces are deposited in a single print. Our novel procedure for attaching discrete electronic components to printed conductive traces using toluene solvent ensures reliable electrical connections by significantly reducing contact resistance by over an order of magnitude compared to existing methods. This fabrication pipeline is an additional key component that contributes to the broader objective of establishing a fully automated fabrication process for soft robots with integrated electronics. We demonstrate a complete assembly of a terrestrial soft robot and showcase its resilience against physical impacts.more » « less
- 
            Fluidic control systems target unique applications where conventional electronics fail. However, current fluidic control systems face challenges in accessible fabrication, reproducibility, and modifiable characteristics such as operating pressure and instability count. Herein, fused deposition‐modeled compliant mechanisms with flexing beams and soft linear actuators for fluid switching and the control of soft robotic systems are introduced. A linear actuator switches a compliant mechanism to cut off airflow through off‐the‐shelf tubing. The modular compliant logic devices can be configured as normally open or normally closed switches, as NOT, AND, and OR gates, and as nonvolatile memory elements. Their use is demonstrated in controlling a fluidic stepper motor, a worm‐like robot, and a fluidic display. These fluidic switches are printable using inexpensive desktop 3D printers, can be reliably reproduced in large quantities, and offer a wide range of modifiable parameters, including scalability, adaptability in operating pressure, and the tunability of instability counts for computational and memory functions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
